Tuesday, 3 January 2017

Filter Erster Ordnung

Ich muss einen gleitenden mittleren Filter mit einer Grenzfrequenz von 7,8 Hz entwerfen. Ich habe gleitende durchschnittliche Filter vor verwendet, aber soweit ich weiß, ist der einzige Parameter, der eingegeben werden kann, die Anzahl der zu durchschnittlichen Punkte. Wie kann sich dies auf eine Grenzfrequenz beziehen Die Inverse von 7,8 Hz beträgt 130 ms und Im arbeiten mit Daten, die bei 1000 Hz abgetastet werden. Bedeutet dies implizieren, dass ich sollte eine gleitende durchschnittliche Filter-Fenstergröße von 130 Proben verwenden, oder gibt es etwas anderes, das ich hier fehlte, ist der Filter, der in der Zeitdomäne zu entfernen verwendet wird Das Rauschen hinzugefügt und auch für Glättung Zweck, aber wenn Sie die gleiche gleitende durchschnittliche Filter im Frequenzbereich für Frequenztrennung dann Leistung wird am schlimmsten. So dass in diesem Fall nutzen Frequenzbereich Filter ndash user19373 Feb 3 16 at 5:53 Der gleitende Durchschnitt Filter (manchmal auch umgangssprachlich als Boxcar-Filter) hat eine rechteckige Impulsantwort: Oder anders ausgedrückt: Denken Sie daran, dass eine diskrete Zeit Frequenz Frequenzgang Gleich der diskreten Zeit-Fourier-Transformation ihrer Impulsantwort ist, können wir sie wie folgt berechnen: Was am meisten für Ihren Fall interessiert ist, ist die Amplitudenreaktion des Filters H (omega). Mit ein paar einfachen Manipulationen, können wir, dass in einer einfacher zu verstehen: Das sieht vielleicht nicht leichter zu verstehen. Allerdings wegen Eulers Identität. Erinnern, dass: Daher können wir schreiben, die oben als: Wie ich schon sagte, was Sie wirklich besorgt ist die Größe der Frequenzgang. So können wir die Größenordnung der oben genannten zu vereinfachen, um es weiter zu vereinfachen: Hinweis: Wir sind in der Lage, die exponentiellen Begriffe aus, weil sie nicht beeinflussen die Größe des Ergebnisses e 1 für alle Werte von Omega. Da xy xy für irgendwelche zwei endlichen komplexen Zahlen x und y ist, können wir schließen, daß die Anwesenheit der exponentiellen Terme die Gesamtgrößenreaktion nicht beeinflußt (sie beeinflussen die Systemphasenreaktion). Die resultierende Funktion innerhalb der Größenklammern ist eine Form eines Dirichlet-Kerns. Sie wird manchmal als periodische sinc-Funktion bezeichnet, weil sie der Sinc-Funktion etwas im Aussehen ähnelt, aber stattdessen periodisch ist. Wie auch immer, da die Definition der Cutoff-Frequenz etwas unterspezifiziert ist (-3 dB Punkt -6 dB Punkt erste sidelobe Null), können Sie die obige Gleichung, um für was auch immer Sie brauchen, zu lösen. Im Einzelnen können Sie Folgendes tun: Stellen Sie H (omega) auf den Wert ein, der der Filterantwort entspricht, die Sie bei der Cutoff-Frequenz wünschen. Set Omega gleich der Cutoff-Frequenz. Um eine kontinuierliche Frequenz auf den diskreten Zeitbereich abzubilden, denken Sie daran, dass osga 2pi frac, wobei fs Ihre Abtastrate ist. Finden Sie den Wert von N, der Ihnen die beste Übereinstimmung zwischen der linken und der rechten Seite der Gleichung gibt. Das sollte die Länge des gleitenden Durchschnitts sein. Wenn N die Länge des gleitenden Mittelwerts ist, dann ist eine angenäherte Grenzfrequenz F (gültig für N gt 2) bei der normalisierten Frequenz Fffs: Der Kehrwert dieser Gleichung ist für große N asymptotisch korrekt und hat etwa 2 Fehler Für N2 und weniger als 0,5 für N4. P. S. Nach zwei Jahren, hier schließlich, was war der Ansatz folgte. Das Ergebnis beruht auf der Annäherung des MA-Amplitudenspektrums um f0 als Parabel (2. Ordnung) nach MA (Omega) ca. 1 (frac - frac) Omega2, die in der Nähe des Nulldurchgangs von MA (Omega) Frac durch Multiplikation von Omega mit einem Koeffizienten, der MA (Omega), ca. 10.907523 (frac-frac) Omega2 ergibt. Die Lösung von MA (Omega) - frac 0 liefert die obigen Ergebnisse, wobei 2pi F Omega. Alle der oben genannten bezieht sich auf die -3dB abgeschnitten Frequenz, das Thema dieser Post. Manchmal ist es zwar interessant, ein Dämpfungsprofil im Stoppband zu erhalten, das vergleichbar ist mit dem eines 1. Ordnung IIR-Tiefpaßfilters (Einpol-LPF) mit einer gegebenen -3dB Grenzfrequenz (ein solcher LPF wird auch Leaky-Integrator genannt, Mit einem Pol nicht genau an DC, aber nah an ihm). Tatsächlich haben sowohl das MA und das 1. Ordnung IIR LPF -20dBdecade Slope im Stopband (man braucht ein größeres N als das, das in der Figur verwendet wird, N32, um dies zu sehen), während aber MA spektrale Nullen bei FkN und a hat 1f Evelope hat das IIR-Filter nur ein 1f-Profil. Wenn man ein MA-Filter mit ähnlichen Rauschfilterungs-Fähigkeiten wie dieses IIR-Filter erhalten möchte und die gleichgeschnittenen 3dB-Grenzfrequenzen anpaßt, würde er beim Vergleich der beiden Spektren erkennen, daß die Stoppbandwelligkeit des MA-Filters endet 3dB unter dem des IIR-Filters. Um die gleiche Stoppbandwelligkeit (d. h. dieselbe Rauschleistungsdämpfung) wie das IIR-Filter zu erhalten, können die Formeln wie folgt modifiziert werden: Ich fand das Mathematica-Skript zurück, wo ich die Unterbrechung für mehrere Filter einschließlich des MA-Werts berechnete. Das Ergebnis basiert auf der Annäherung des MA-Spektrums um f0 als Parabel nach MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) ca. N16F2 (N-N3) pi2. Und Ableitung der Kreuzung mit 1sqrt von dort. Ndash Massimo Jan 17 16 um 2: 08Aufnehmen die erste Ordnung IIR Filter: yn alpha xn (1 - alpha) yn - 1 Wie kann ich den Parameter alpha s. t. Das IIR annähernd so gut wie möglich die FIR, die das arithmetische Mittel der letzten k Proben ist: Wo n in k, infty), was bedeutet, dass der Eingang für den IIR länger als k sein kann und dennoch Id die beste Annäherung der haben Mittelwert der letzten k Eingänge. Ich weiß, die IIR hat unendliche Impulsantwort, daher Im auf der Suche nach der besten Annäherung. Id für die analytische Lösung glücklich sein, ob es für oder ist. Wie konnten diese Optimierungsprobleme nur mit der 1. Ordnung IIR gelöst werden. (1 - alpha) yn - 1 genau ndash Es ist verpflichtet, eine sehr schlechte Annäherung zu werden. Can39t Sie leisten, alles, was mehr als ein First-Order IIR ndash leftaroundover Okt 6 11 at 13:42 Vielleicht möchten Sie Ihre Frage bearbeiten, so dass Sie don39t verwenden yn zwei verschiedene Dinge bedeuten, z. Könnte die zweite angezeigte Gleichung zn frac xn cdots frac xn-k1 lesen, und Sie könnten sagen, was genau ist Ihr Kriterium der Quoten gut als möglichequot z. B. Wollen Sie vert yn - znvert so klein wie möglich für alle n, oder vert yn - znvert2 so klein wie möglich für alle n sein. Ndaren Dilip Sarwate Ich weiß, das ist ein alter Post so, wenn Sie sich erinnern können: wie ist Ihre Funktion 39f39 abgeleitet I39ve codiert eine ähnliche Sache, aber mit den komplexen Übertragungsfunktionen für FIR (H1) und IIR (H2 ) Und dann Summe (abs (H1 - H2) 2). I39ve verglichen dieses mit Ihrer Summe (fj), aber erhalten unterschiedliche resultierende Ausgänge. Dachte, ich würde vor dem Pflügen durch die Mathematik fragen. (1 - alpha) alpha xn - 1 (1 - alpha) 2 yn - 1 ampamp alpha xn (1 - alpha) alpha xn - 1 (1 - alpha) 2 yn - 2 ampamp alpha xn (1 - alpha) alpha xn-1 (1 - alpha) 2 alpha xn-2 (1 - alpha) 3 yn - 3 Ende, so daß der Koeffizient von xn-m alpha (1-alpha) m ist . Der nächste Schritt ist, Derivate zu nehmen und gleich Null zu sein. Betrachtet man ein Plot des abgeleiteten J für K 1000 und Alpha von 0 bis 1, sieht es aus wie das Problem (wie Ive es aufgestellt) ist schlecht gestellt, weil die beste Antwort ist Alpha 0. Ich denke, Theres ein Fehler hier. Die Art und Weise sollte es nach meinen Berechnungen sein: Mit dem folgenden Code auf MATLAB ergibt etwas Äquivalentes zwar unterschiedlich: Jedenfalls haben diese Funktionen Minimum. So können wir annehmen, dass wir uns nur um die Annäherung über die Unterstützung (Länge) des FIR-Filters kümmern. In diesem Fall ist das Optimierungsproblem genau: J2 (alpha) sum (alpha (1-alpha) m - frac) 2 Das Plotten J2 (alpha) für verschiedene Werte von K versus alpha ergibt das Datum in den Diagrammen und der Tabelle unten. Für K 8. alpha 0,1533333 für K 16. alpha 0,08 für K 24. alpha 0,0533333 für K 32. alpha 0,04 für K 40. alpha 0,0333333 für K 48. alpha 0,0266667 für K 56. alpha 0,0233333 für K 64. alpha 0,02 für K 72. alpha 0.0166667 Die roten gestrichelten Linien sind 1K und die grünen Linien alpha, der Wert von alpha, der J2 (alpha) minimiert (ausgewählt aus tt alpha 0: 0,01: 13). Theres eine nette Diskussion dieses Problems in der eingebetteten Signalverarbeitung mit der Mikrosignalarchitektur. Etwa auf den Seiten 63 und 69. Auf Seite 63 ist eine Ableitung des exakten rekursiven gleitenden Durchschnittsfilters (die niaren in seiner Antwort gegeben hat) enthalten. Zur Bequemlichkeit in Bezug auf die folgende Diskussion entspricht sie der folgenden Differenzengleichung: Die Näherung Die den Filter in die von Ihnen angegebene Form bringt, vorausgesetzt, dass x approx y, weil (und ich zitiere aus S. 68) y der Mittelwert von xn Proben ist. Diese Approximation erlaubt es uns, die vorstehende Differenzengleichung wie folgt zu vereinfachen: Einstellen von alpha, erhalten wir zu Ihrer ursprünglichen Form y alpha xn (1-alpha) y, was zeigt, dass der Koeffizient, den Sie (in Bezug auf diese Approximation) genau 1over haben wollen (Wobei N die Anzahl der Proben ist). Ist diese Annäherung die beste in irgendeiner Hinsicht Seine sicherlich elegant. Heres, wie sich die Amplitudenreaktion bei 44,1 kHz für N 3 vergleicht und wenn N auf 10 erhöht wird (Approximation in blau): Wie aus der Peters-Antwort hervorgeht, kann die Annäherung eines FIR-Filters mit einem rekursiven Filter unter einer Kleinste-Quadrate-Norm problematisch sein. Eine ausführliche Diskussion darüber, wie dieses Problem im Allgemeinen gelöst werden kann, finden Sie in JOSs These, Techniken für Digitalfilter Design und System Identifikation mit Anwendung auf die Violine. Er befürwortet die Verwendung der Hankel-Norm, aber in Fällen, in denen die Phasenreaktion keine Rolle spielt, deckt er auch die Kopecs-Methode ab, die in diesem Fall gut funktionieren könnte (und eine L2-Norm verwendet). Einen breiten Überblick über die Techniken in der Arbeit finden Sie hier. Sie können andere interessante Approximationen liefern.


No comments:

Post a Comment